
On Smooth Fractal Coloring Techniques

Jussi Härkönen

Master’s Thesis

Department of Mathematics

Åbo Akademi University

2007

Abstract

Härkönen, Jussi: On Smooth Fractal Coloring Techniques

Master’s Thesis, Department of Mathematics, Åbo Akademi University, Turku,

2007, 61 pages.

The thesis was carried out under the supervision of Professor Göran Högnäs.

Keywords: coloring function, coloring algorithm, escape time algorithm, fractal,

fractal art, ultra fractal, truncated orbit, iteration count, triangle inequality av-

erage, curvature average, stripe average.

This work studies the mathematics of selected techniques for coloring fractal

images. The classic escape time algorithm is extended by adding the concepts of

coloring, palette and index functions. The coloring function is evaluated for each

pixel of an image, whereas palette and index functions map this value to the final

RGB color. In addition to good performance, also smoothness and the possibility

to adjust the visual appearance are desirable characteristics of coloring functions.

The Smooth Iteration Count coloring is the smooth equivalent of the classic

Iteration Count coloring. Its continuity and smoothness are studied thoroughly.

The Smooth Iteration Count coloring exhibits small discontinuities at the iter-

ation boundaries of a fractal, and a method for calculating an upper bound for

the magnitude of the discontinuity is presented.

Average colorings are a family of coloring functions that use the decimal part

of the smooth iteration count to interpolate between average sums. In addition

to linear interpolation, a smooth Catmull-Rom spline interpolation method can

be used.

The Triangle Inequality Average and Curvature Average colorings are pre-

sented and analyzed as examples of branching average colorings. Both colorings

exhibit a similar tree-like branching structure, and the three mathematical prop-

erties that lead to this kind of structure are presented. A new coloring called the

Stripe Average is introduced based on the behavior of the Triangle Inequality

Average coloring.

Contents

1 Introduction 3

2 Fundamental Concepts 5

2.1 Iterations and Orbits . 5

2.2 Fractals . 6

2.2.1 Coloring and Palette functions 7

2.2.2 Calculating Images of Fractals 8

2.2.3 The Iteration Count Coloring 8

2.3 Iteration Levels and Boundaries 9

2.4 Desirable Properties of Colorings 10

2.4.1 Performance . 10

2.4.2 Smoothness . 11

2.4.3 Degrees of Freedom . 12

3 The Smooth Iteration Count Coloring 13

3.1 Simplification . 13

3.1.1 Extending the Results . 14

3.2 The Continuous Iteration Count 16

3.2.1 Continuity and Smoothness 16

3.3 The Smooth Iteration Count . 18

3.3.1 Continuity and Smoothness 20

3.3.2 Error Estimation . 22

4 Branching Average Colorings 26

4.1 Average Colorings . 26

4.1.1 Using Smooth Iteration Count for Interpolation 27

4.2 The Triangle Inequality Average Coloring 29

2

CONTENTS 3

4.2.1 Behavior for Distant Starting Points 32

4.2.2 Behavior in the Neighborhood of Origin 33

4.3 The Curvature Average Coloring 36

4.3.1 Behavior for Distant Starting Points 37

4.4 Similarities and Differences . 38

4.4.1 Emergence of Branches . 40

4.4.2 Continuity and Smoothness 41

4.5 The Stripe Average Coloring . 42

4.5.1 The Stripe Density Parameter 42

4.5.2 Behavior in the Neighborhood of Origin 43

5 Svensk sammanfattning 45

A Using Colorings on a Fractal Image 48

A.1 Intermediate Images . 49

A.2 Conclusion . 57

Chapter 1

Introduction

This work studies the mathematics of selected algorithms that are used to color

fractal images. These algorithms were developed to be instruments for fractal

art. Javier Barrallo and Damien Jones describe the emergence of fractal art and

the role of coloring algorithms in the following way [2].

During the 1980s, fractal enthusiasts began exploring fractals for their

artistic merit, not for their mathematical significance. While mathe-

matics was the tool, the focus was art. As the fractal equation itself

was the most obvious mathematical element, fractal artists experi-

mented with new equations, introducing hundreds of different fractal

types. By carefully choosing parameters to refine form, color, and

location, these explorers introduced the concept of fractal art.

After 1995, few new major fractal types have been introduced. This

is because the newest innovations in fractal art do not come from

changing the fractal equation, but from new ways of coloring the

results of those equations. As these coloring algorithms move from

simple to complex, fractal artists are often returning to the simpler,

classical fractal equations. With the increased flexibility these so-

phisticated algorithms provide, there is even more room for personal

artistic expression.

Countless coloring algorithms have been developed. The development pro-

cess of a coloring algorithm usually combines experimentation to mathematical

understanding and analysis of the visual results. However, thorough mathe-

4

CHAPTER 1. INTRODUCTION 5

matical understanding is not required in order to develop interesting and useful

algorithms.

This work aims to gain better understanding of the selected coloring algo-

rithms, or colorings. Their visual appearance is explained based on mathemati-

cal analysis. This analysis also led to the development of a new coloring, namely

the Stripe Average coloring to be introduced in Section 4.5.

Although this work aims to present its contents rigorously and accurately,

some of the results are expressed in a somewhat vague form. This is inherent to

the applied nature of the subject. To name an example, the words ”small” and

”distant” are used loosely without an exact definition.

The reader is assumed to be familiar with calculus and complex analysis.

Fractals are explained in the extent necessary to introduce the main concepts

and notation, whereas details in the theory of chaotic dynamical systems from

which fractals emerge fall outside the scope of this work.

The contents are organized as follows: Fundamental concepts and definitions

necessary for the later chapters are introduced in Chapter 2. The classic escape

time algorithm for calculating fractal images is extended to suit the needs of

coloring functions. Heuristic criteria to evaluate the quality of a coloring are also

presented.

Chapter 3 presents two continuous colorings that extend the discontinuous

Iteration Count coloring. A detailed discussion of the Smooth Iteration Count

coloring and a proof of its smoothness are presented. It exhibits small disconti-

nuities at the iteration boundaries of a fractal, and a method for calculating an

upper bound for the magnitude of the discontinuity is presented.

Chapter 4 first introduces average colorings followed by a discussion of linear

and smooth Catmull-Rom spline interpolation methods. The Triangle Inequality

Average and Curvature Average colorings are described and analyzed as examples

of average colorings. Based on the behavior of the Triangle Inequality Average

coloring, the Stripe Average coloring is then introduced.

Appendix A illustrates the construction process of a fractal image using the

colorings discussed in the earlier chapters.

The thesis was carried out under the supervision of Professor Göran Högnäs.

Kerry Mitchell provided some helpful comments.

Chapter 2

Fundamental Concepts

This chapter first introduces fundamental definitions that are the foundation for

the following chapters. The calculation of images of divergent fractals is then

discussed.

For convenience, the presentation of definitions is adapted for the needs of

this work. For example, definitions are presented as confined to the complex

plane instead of an arbitrary metric space.

2.1 Iterations and Orbits

The notation and definitions in this section are adapted from [3].

The n-fold composition of f with itself is denoted by fn(z). That is,

fn(z) = f(f(. . . f(z) . . .))

where f is applied to z n times. The points f(z), f 2(z), f 3(z), . . . are called the

iterates of z. Repeatedly applying the function to the previous iterate is called

iteration. Given an initial value z0 and a function f , the nth iterate fn(z0) is

denoted zn.

Definition 2.1 (Orbit). Given a function f : C 7→ C, the (forward1) orbit of a

point z ∈ C is the set

O(z) = {z, f(z), f2(z), . . . }.
1It is not necessary to separate forward and backward orbits in this context because only

the forward orbit is of interest for this work.

6

CHAPTER 2. FUNDAMENTAL CONCEPTS 7

The orbit O(z) is said to be periodic if, for a given f and z, there exists a

number n ∈ N such that fn(z) = z. An orbit contains infinitely many points if

it is not periodic. An orbit O(z) escapes if the iterates converge to infinity.

When calculating fractals on a computer, a finite representation of an orbit is

needed. This is done by limiting both the magnitude and the maximum number

of elements to be contained in an orbit. Define the constants M and Nmax as the

bailout value and the maximum number of iterations, respectively. Furthermore,

define the set CNmax as

CNmax =

Nmax +1⋃
k=1

Ck.

Definition 2.2 (Truncated Orbit). Let an orbit

O(z) = {z, f(z), f2(z), . . . }

and constants M and Nmax ∈ N be given. Let N̄ denote the smallest nonnegative

integer for which |f N̄(z)| > M , and define N = min{N̄ ,Nmax}. The truncated

orbit OT (z) ∈ CNmax is the set

OT (z) = {z, f(z), f2(z), . . . , fN(z)}.

In addition to the initial point z, the truncated orbit contains N of the first

Nmax iterates zn. The number of elements in a truncated orbit is N + 1. It is

noteworthy that N ≤ Nmax and N is dependent of both the function f and the

initial value z.

The following inequality describes the magnitude of the two last iterates zN−1

and zN of a truncated orbit with respect to the bailout value M .

Proposition 2.1 (Bailout Inequality). Assume 1 ≤ N ≤ Nmax and consider the

points zN−1 ∈ OT (z) and zN ∈ OT (z). The bailout inequality is the inequality

|zN−1| ≤ M < |zN |. (2.1)

According to Definition 2.2, N is the smallest integer for which M < |zN |.
Thus |zN−1| ≤ M and the Bailout Inequality follows.

2.2 Fractals

As an example, consider the function f : C 7→ C,

f(z) = zp + c (2.2)

CHAPTER 2. FUNDAMENTAL CONCEPTS 8

where the constant p ∈ N, p ≥ 2, and the seed c ∈ C. The function f(z) defines

the dynamical system

zk = zp
k−1 + c. (2.3)

This system is known to exhibit chaotic behavior; depending on the value of the

constant c and the initial value z0, the iterates behave differently. The intricate

nature of this function can be illustrated by plotting some characteristics of the

orbits when varying c or z0 over the complex plane.

2.2.1 Coloring and Palette functions

An image is represented as an m × n matrix of discrete points referred to as

pixels. To each pixel in the matrix is associated an RGB color [4, p. 572]. Let z0

denote the point corresponding to the position of a pixel in the complex plane.

To calculate the RGB color of a pixel in a fractal image, the truncated orbit

OT (z0) is first calculated. Then a coloring function is evaluated.

Definition 2.3 (Coloring Function). A coloring function is a function

u : CNmax 7→ R (2.4)

that maps a truncated orbit to the real line.

The number of elements N +1 in the argument of u is variable. Implementa-

tions of coloring functions usually include a loop that is executed for all elements

of OT (z0) (cf. Section 2.2.2). The coloring u(OT (z0)) is often studied as a func-

tion of the point z0, whereas certain coloring functions only use the last iterate

zN of OT (z0). This is denoted u(zN).

A color index function I(u) maps the value u of the coloring function to a

color index. The color index is either contained in or clamped to the interval

[0, 1]. The color palette function P (I) is then used to map the color index to the

RGB color space. The red, green and blue components of an RGB color can be

represented as a point in [0, 1]3.

Definition 2.4 (Palette Function). A palette function P : R 7→ R3 maps the

color index I to the RGB color space. Its domain is [0, 1] and range [0, 1]3. The

domain can be extended to the real line by using the decimal part of I.

The color index function is merely used as a means to adjust the visual

appearance of a coloring without the need to change the palette function.

CHAPTER 2. FUNDAMENTAL CONCEPTS 9

2.2.2 Calculating Images of Fractals

Iterating the function defined by equation 2.3, the algorithm presented below

renders an image of a Julia set [1, p. 258]. This algorithm extends the escape

time algorithm presented in [1, p. 252] by introducing coloring, index and palette

functions.

The following operations are carried out for each pixel in the m × n matrix

representing the image.

1. Set z0 to correspond to the position of the pixel in the complex plane.

2. Calculate the truncated orbit by iterating the formula zn = f(zn−1) starting

from z0 until either

• |zn| > M , or

• n = Nmax,

where Nmax is the maximum number of iterations.

3. Using the coloring and color index functions, map the resulting truncated

orbit to a color index value.

4. Determine an RGB color of the pixel by using the palette function.

If |zn| > M , the pixel is an outside point. Otherwise, if n = Nmax, the point is

inside.

The Mandelbrot set can be calculated by setting z0 = 0 and c to correspond to

the position of the pixel in the complex plane in step 1. In addition to the system

2.2 mainly used in this work, many other functions exhibit chaotic behavior.

Also various other types of fractals exist and are calculated with modified or

completely different algorithms, but are not discussed here.

2.2.3 The Iteration Count Coloring

One of the most intuitive ways to specify the color of a pixel is to choose the

color proportional to the number of iterations N . The Iteration Count coloring

is illustrated in Figure 2.1. The coloring function simply returns the number of

elements in the truncated orbit divided by 20. The coloring is applied to the

CHAPTER 2. FUNDAMENTAL CONCEPTS 10

system 2.3 with c = 0.5 + 0.25i and p = 2. The bailout value was chosen to

be M = 10 and the initial value z0 was set to the value corresponding to the

pixel position. The real and imaginary parts vary between -1.333 and 1.333 in

the figure. The color palette function uses the RGB color palette shown in figure

2.2. The color index function

I(u) = k(u− u0),

where k = 2.5 and u0 = 0, was used.

This example fractal is used throughout this work to illustrate different col-

orings. The coefficient k is used to adjust the colors in the image to a suitable

range. The offset u0 is used to adjust the relative location of light and dark

areas. The outside areas of fractals are of most interest for artistic purposes.

This fractal consists only of outside points and is consequently well suited as an

example. The ideas presented can easily be adapted to many other divergent

fractals as well.

2.3 Iteration Levels and Boundaries

The following definition assumes that a function f and a bailout value M are

given.

Definition 2.5 (Iteration Levels and Boundaries). For n ≥ 1, the nth iteration

level is the set

Ln = {z0 ∈ C : |fn−1(z0)| < M < |fn(z0)|}.

The nth iteration boundary is the set

Bn = {z0 ∈ C : |fn−1(z0)| = M}.

For n = 0, define

L0 = {f(z0) : z0 ∈ L1}

and

B0 = {f(z0) : z0 ∈ B1}.

The iteration levels correspond to the areas colored with same color in Figure

2.1. The boundaries lie between the iteration levels. A point in LN ∪BN exceeds

the bailout M after N iterations.

CHAPTER 2. FUNDAMENTAL CONCEPTS 11

Figure 2.1: Illustration of the Iteration Count coloring.

2.4 Desirable Properties of Colorings

The following subsections present criteria to evaluate the goodness and usefulness

of a coloring.

2.4.1 Performance

The fewer calculations needed to determine the color of a pixel, the better. At the

moment of writing, rendering times for fractal images on a normal PC are usually

manageable. For example, rendering the final image constructed in Appendix A

using both cores of a 2.17MHz Intel Core 2 processor took 8 minutes and 28

CHAPTER 2. FUNDAMENTAL CONCEPTS 12

Figure 2.2: The RGB color palette used in Figure 2.1. The colors are indexed

from 0 (left) to 1 (right).

seconds. The image was rendered using resolution 2000× 1225 and normal anti-

aliasing settings.

A fractal animation sequence can contain thousands of frames and each frame

must be rendered separately. Consequently, rendering times for fractal animation

are orders of magnitude greater than rendering times for images. Rendering a

short animation sequence can take from hours to days and thus performance

remains to be a problem.

2.4.2 Smoothness

It is often desirable that the colors of a fractal image change smoothly, that is,

without noticeable edges. In addition to any discontinuities that are very easy

to see, the human eye also identifies discontinuity in the rate of change of colors.

Continuity is usually sufficient if the discontinuity in the derivative is small.

However, smoother appearance requires the coloring function to be continuously

differentiable.

Definition 2.6 (Smooth Coloring). A coloring u is smooth in z0 if u(OT (z0)) ∈
C1(C), that is, if both u(OT (z0)) and

du(OT (z0))

dz0

are continuous [5, Remark 3.1.2, p. 251].

Colorings are discontinuous in the neighborhood of the periodic points P of

a fractal set. Define

Pr = {z ∈ C : ∃p ∈ P • |z − p| < r}.

CHAPTER 2. FUNDAMENTAL CONCEPTS 13

The set Pr includes a neighborhood of radius r to each periodic point in P . In

this work, a coloring is said to be differentiable if it is differentiable in the set

{z ∈ C : |z| ≤ M}\Pr for a small r > 0. Thus the neighborhood of the periodic

points is ignored when considering the differentiability of a coloring.

Discontinuity usually appears at the iteration boundaries because the number

of iterations changes at the boundary. The smooth iteration count and interpo-

lation can effectively be used to eliminate discontinuities, as will be discussed in

Chapter 4.

2.4.3 Degrees of Freedom

A parameter is a variable in the coloring function that affects the visual appear-

ance of the coloring. Parameters offer degrees of freedom for adjusting the visual

appearance of the coloring.

Parameters that give smooth coloring only for specific (e.g. integer) values

appear frequently in applications. Real parameters that continuously affect the

coloring are especially useful for creating motion in fractal animation.

Chapter 3

The Smooth Iteration Count

Coloring

The smooth iteration count is a smooth equivalent of the iteration count. Both

attain integer values on the iteration boundaries, but the smooth iteration count

varies smoothly between the iteration boundaries whereas the iteration count

changes in a stepwise manner.

The smooth iteration count is useful for creating smooth and soft color tran-

sitions in fractal images. Its decimal part can also be used for interpolation in

order to introduce continuity and smoothness to various other colorings.

3.1 Simplification

Consider the system 2.3. The approximation

zn = zp
n−1 + c ≈ zp

n−1 (3.1)

is valid for |zp
n−1| � |c|. This gives the formula

zn = zp
n−1. (3.2)

Denoting z0 = r0e
iθ0 and applying 3.2 iteratively gives

zn = rpn

0 eipnθ0 , (3.3)

or

|zn| = rpn

0 . (3.4)

14

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 15

The bailout inequality 2.1 states that M < |zN |. The function |f(z)| = |z|p

is strictly increasing for |z| > 1. Assuming M > 1 and applying the formula

|zN | = |zN−1|p to the inequality |zN−1| ≤ M gives |zN | ≤ Mp. Thus the last

iterate |zN | fulfills the inequality

M < |zN | ≤ Mp. (3.5)

Figure 3.1 shows the iteration count coloring applied to the system 3.2. The

figure shows the square bounded by the points −4−4i and 4+4i in C. The black

disk |z| ≤ 1 in the middle of the image consists of inside points. Consequently,

only the distances r0 > 1 are relevant for this system.

For the system 2.3, it can be shown that all orbits O(z) escape for |z| >

0.5 +
√

0.25 + |c| [1, p. 258]. Assuming |c| ≤ 2, all orbits for |z| > 2 escape so it

is reasonable to confine r0 to values greater than 2.

The approximation 3.1 offers an accurate enough simplification of the sys-

tem 2.3 for large r0. Most importantly, the nth iterate can be expressed in a

very compact form according to equation 3.3, whereas the system 2.3 leads to

polynomials of increasing complexity that are difficult to work with.

3.1.1 Extending the Results

The Continuous and Smooth Iteration Count colorings are deduced for the sim-

plified system 3.2. It will be shown in Section 3.3.2 that the Smooth Iteration

Count coloring is almost smooth also when applied to the system 2.3.

When applied to the system 3.2, the Continuous and Smooth Iteration Count

colorings are independent of the argument θ0 of the initial point z0 = r0e
iθ0 . Thus

it is sufficient to consider the continuity and smoothness with respect to the initial

radius r0.

Equation 3.3 allows the representation of a coloring u(rN) as a function of r0,

namely

u(rN) = u(rpN

0).

Expression u(rpN

0) is often used for deducing results for the system 3.2. However,

when extending the results from the system 3.2 to the system 2.3, it is necessary

to use u(rN) because the simplification 3.1 is likely to be valid only for the last

iteration. For this reason, also the discussion of continuity and smoothness of

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 16

the colorings operate on u(rN). The requirement r0 > 2 is also replaced by the

requirement rN > 2.

Figure 3.1: The iteration count coloring applied to the system 3.2.

It is noteworthy that for any outside point z0, its iterates z1, z2, . . . start to

grow at an increasingly fast rate as soon as they escape outside the area where

system 2.3 exhibits chaotic behavior. Formally, for an arbitrary bound R there is

a number n such that the iterates zn, zn+1, . . . are outside the disk |z| ≤ R. The

requirement r0 > 2 and the assumption made in the next chapter that r0 is large

are valid for the iterates zn, zn+1, . . . When extending the results to hold for the

system 2.3, the iterates z0, . . . , zn−1 can be omitted because the Continuous and

Smooth Iteration Count colorings are functions of the magnitude rN of the last

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 17

iterate only. Thus the conclusions made are also valid for outside points z0 for

which r0 ≤ 2.

3.2 The Continuous Iteration Count

A continuous but not Smooth Iteration Count coloring is first presented. This

coloring exhibits noticeable edges at the iteration boundaries. It is presented in

order to illustrate and emphasize the requirement for smoothness.

Definition 3.1 (Continuous Iteration Count Coloring). The Continuous Itera-

tion Count coloring is the function

u(rN) = N +
Mp − rN

Mp −M
. (3.6)

According to the bailout inequality 3.5, the magnitude rN of the last iterate

varies between M and Mp. The decimal part of the continuous iteration count

is given by the quotient
Mp − rN

Mp −M
.

This expression can be interpreted as linear interpolation in the interval [M, Mp].

It attains the value 0 when rN = Mp and 1 when rN = M .

3.2.1 Continuity and Smoothness

The following theorem describes the continuity and smoothness of the Continuous

Iteration Count coloring when applied to the system 3.2.

Theorem 3.1. The Continuous Iteration Count coloring 3.6 attains values equal

to the iteration count at the iteration boundaries. It is continuous but not smooth

with respect to r0.

Proof. Continuity on the iteration levels follows from the continuity of the ex-

pression 3.6. The following shows that it is continuous also in the neighborhood

of the iteration boundaries.

Consider a point z0 ∈ BN . The definition of the iteration boundary gives

|zN−1| = M

or, combining this with 3.4,

|zN | = Mp. (3.7)

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 18

Substituting to 3.6 gives

u(Mp) = N +
Mp −Mp

Mp −M
= N.

This also shows that the continuous iteration count coincides with the iteration

count at the iteration boundaries.

Now consider another point ẑ0 ∈ LN−1 such that |ẑN−1| = M + ε for a small

ε > 0. This orbit escapes outside the bailout M at the (N − 1)th iteration.

Denote ε ↓ 0 as ε → 0 and ε > 0. Substituting r̂N−1 = M + ε to 3.6 gives

u(r̂N−1) = N − 1 +
Mp − (M + ε)

Mp −M
→ N − 1 + 1

= N

as ε ↓ 0. Thus 3.6 is continuous in the neighborhood of the iteration boundaries.

Using Equation 3.4, u(rN) can be expressed as

u(rpN

0) = N +
Mp − rpN

0

Mp −M
.

The derivative can now be calculated as

du

dr0

= − pNrpN−1
0

Mp −M
.

for z0. For the point ẑ0, the derivative is

du

dr0

= −pN−1rpN−1−1
0

Mp −M

The derivatives differ by a factor of pr
pN−1(p−1)
0 so 3.6 is not smooth in the neigh-

borhood of the iteration boundaries.

Figure 3.2 illustrates the continuous iteration count as a function of the mag-

nitude of the initial point r0. Figure 3.3 shows the Continuous Iteration Count

coloring applied to the example fractal described in Section 2.2.3. Although the

iteration boundaries are softer than in Figure 2.1, they are still clearly distin-

guishable despite the continuity of the coloring.

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 19

2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

r
0

u

Continuous iteration count coloring

Iteration count N
Continuous iteration count u

Figure 3.2: The continuous iteration count u(rpN

0) as a function of r0. The curves

are calculated for M = 5 and p = 2.

3.3 The Smooth Iteration Count

The following discussion is based on the simplification 3.4. After the smooth

iteration count expression has been deduced for the simplified system, the result

is shown to be quite accurate for the original system as well.

Applying Equation 3.4 to the bailout inequality gives

M < rpN

0 ≤ Mp. (3.8)

By taking a logarithm twice over this inequality, the bounds for N can be solved;

ln M < pN ln r0 ≤ p ln M

ln
ln M

ln r0

< N ln p ≤ ln p + ln
ln M

ln r0

1

ln p
ln

ln M

ln r0

< N ≤ 1 +
1

ln p
ln

ln M

ln r0

. (3.9)

The number of iterations N is an integer and its value changes by one when

r0 crosses an iteration boundary. The function

v(r0) = 1 +
1

ln p
ln

ln M

ln r0

(3.10)

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 20

Figure 3.3: The Continuous Iteration Count coloring applied to the example

fractal.

attains positive real values for 2 < r0 ≤ M . Because N = N(r0) is bounded by

the inequality v(r0) − 1 < N(r0) ≤ v(r0), it is apparent that v(r0) must follow

N(r0). Also, v(r0) = N(r0) holds at the iteration boundaries. This is illustrated

in Figure 3.4.

Using 3.4, r0 can be expressed as a function of the last iteration rN . Substi-

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 21

2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

r
0

u

Smooth bounds of the iteration count coloring

Iteration count N
Lower bound L
Upper bound U

Figure 3.4: The iteration count N is bounded by the upper bound U = v(r0)

and the lower bound L = v(r0)−1. The curves are plotted for M = 5 and p = 2.

tuting r0 = rp−N

N to v(r0) and denoting u(rN) = v(rp−N

N) gives

u(rN) = 1 +
1

ln p
ln

ln M

ln rp−N

N

= 1 +
1

ln p
ln

pN ln M

ln rN

= 1 +
1

ln p
(N ln p + ln

ln M

ln rN

)

= N + 1 +
1

ln p
ln

ln M

ln rN

.

Definition 3.2 (Smooth Iteration Count). The Smooth Iteration Count coloring

is the function

u(rN) = N + 1 +
1

ln p
ln

ln M

ln rN

. (3.11)

3.3.1 Continuity and Smoothness

Theorem 3.2. The Smooth Iteration Count coloring 3.11 attains values equal

to the iteration count at the iteration boundaries. It is continuous and smooth

with respect to r0.

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 22

Proof. In analogy with the proof of Theorem 3.1, rN = Mp for an arbitrary point

z0 ∈ BN . Substituting to 3.11 gives

u(Mp) = N + 1 +
1

ln p
ln

ln M

ln Mp

= N + 1 +
1

ln p
(ln

ln M

ln M
− ln p)

= N + 1− 1 +
1

ln p
ln 1

= N.

All outside points on any of the iteration levels LN , N = 1, 2, . . . , are mapped

by fN to the last iteration level L0. Similarly, all bounds BN are mapped to the

last bound B0. For any fixed outside point, the number of iterations N is finite

so the mapping fN is well defined and smooth because f is smooth.

Also u(rN) is smooth for a fixed N . Smoothness on any outside point z0 ∈ LN ,

N = 1, 2, . . . , contained in any of the iteration levels then follows from the

smoothness of fN .

The number of iterations N changes at the iteration boundaries. Because

points in LN−1 and BN are mapped smoothly to L0 and B1, respectively, the

continuity of u and du
dr0

needs to be shown only between L0 and B1.

Consider the points z0 ∈ B1 and ẑ0 ∈ L0 such that r0 = M and r̂0 = M + ε.

It was already shown that u(rN) = N for rN = Mp, so u(r1) = 1. Substituting

r̂0 = M + ε to 3.11 gives

u(M + ε) = 0 + 1 +
1

ln p
ln

ln M

ln(M + ε)

→ 1 +
1

ln p
ln 1

= 1

as ε ↓ 0. Thus 3.11 is continuous in the neighborhood of iteration boundaries.

Differentiating 3.11 with respect to rN gives

du

drN

=
1

ln p
· 1

ln M/ ln rN

· ln M

rN(ln rN)2

=
1

rN ln rN ln p
. (3.12)

Using the chain rule, the derivative with respect to r0 can be written

du

dr0

=
du

drN

· drN

dr0

.

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 23

For r0 = M , the last iterate is rN = r1 = Mp. Thus

dr1

dr0

= pMp−1

and

du

dr0

=
pMp−1

Mp ln Mp ln p
(3.13)

=
1

M ln M ln p
. (3.14)

For r̂0 = M +ε, the number of iterations is N = 0. The derivatives now evaluate

to
dr0

dr0

= 1

and

du

dr0

=
1

(M + ε) ln(M + ε) ln p

→ 1

M ln M ln p

as ε ↓ 0. That is, du
dr0

is continuous between B1 and L0.

The Smooth Iteration Count coloring is illustrated in Figure 3.5. The itera-

tion boundaries are now indistinguishable from the figure. This is a consequence

of the fact that the derivative du
dr0

is continuous at the iteration boundaries for the

Smooth Iteration count coloring but discontinuous for the Continuous Iteration

Count coloring.

The N − 1 first iterations only increase the iteration count, whereas the

decimal part of u(rN) only depends on rN . Thus the N − 1 first iterations

are independent of the approximation 3.1, which is important only for the last

iteration. The statement made above about the continuity of fN holds for the

function f(z) = zp, that defines the simplified system 3.2, as well as for f(z) =

zp + c. Theorem 3.2 can thus be extended to the system zn+1 = zp
n + c as long

as the approximation 3.1 is valid for the last iteration.

3.3.2 Error Estimation

Theorem 3.3. Applying the Smooth Iteration Count coloring given by 3.11 to the

system 2.2 results in a discontinuity between the iteration levels. the magnitude

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 24

Figure 3.5: Smooth Iteration Count coloring applied to the example fractal.

of the discontinuity is bounded by

∆max =
1

ln p
ln

ln Mp

ln(Mp − |c|)
. (3.15)

Proof. Consider again the two points z0 ∈ B1, r0 = M , and ẑ0, r̂0 = M + ε. If

the system 2.3 is iterated instead of the system 3.2, a discontinuity is introduced

between the iteration levels. For z0, the magnitude of the first iterate is r1 =

|zp
0 + c| ≈ Mp, so N = 1. This gives the smooth iteration count

u(r1) = 2 +
1

ln p
ln

ln M

ln |zp
0 + c|

= 1 +
1

ln p
ln

ln Mp

ln |zp
0 + c|

(3.16)

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 25

For ẑ0, N = 0 and

u(r̂0) = 1 +
1

ln p
ln

ln M

ln(M + ε)

→ 1 +
1

ln p
ln

ln M

ln M

= 1. (3.17)

The magnitude ∆ of the discontinuity is given by

∆ = |u(r1)− u(r̂0)| (3.18)

= |1 +
1

ln p
ln

ln Mp

ln |zp
0 + c|

− 1|

= | 1

ln p
ln

ln Mp

ln |zp
0 + c|

|.

The triangle inequality gives bounds for |zp
0 + c|, namely

|zp
0 | − |c| ≤ |zp

0 + c| ≤ |zp
0 |+ |c|,

or, substituting r0 = M ,

Mp − |c| ≤ |zp
0 + c| ≤ Mp + |c|.

The magnitude of the discontinuity ∆ is to be maximized on this interval in

order to find an upper bound for it. Denoting x = |zp
0 + c| and differentiating ∆

gives
d∆(x)

dx
=

1

x ln x ln p
.

Assuming x > 1, the derivative is strictly decreasing and 3.18 attains its maxi-

mum value at |zp
0 + c| = Mp − |c|. Thus the maximum error due to the approxi-

mation 3.1 is

∆max =
1

ln p
ln

ln Mp

ln(Mp − |c|)
.

For the example fractal with parameters p = 2, M = 10 and |c| = 0.5590,

3.15 gives the maximum error of ∆max = 0.00176. This is illustrated in Figure

3.6. Error equal to 0 is colored white whereas error equal to 0.00176 is colored

black.

Suppose the palette function maps the unit interval [0, 1] to, say, 500 discrete

colors and the index function is I(u) = u. Then the colors are separated by steps

CHAPTER 3. THE SMOOTH ITERATION COUNT COLORING 26

of 1/500 = 0.002 in u. This is greater than the magnitude of the discontinuity

∆max = 0.00176, so the extension from the simplified system 3.2 to the chaotic

system 2.3 indeed only leads to an insignificant error. In addition, the accuracy

can be further improved by increasing the value of M .

Figure 3.6: The error in the smooth iteration count due to the approximation

3.1.

Chapter 4

Branching Average Colorings

This chapter introduces the Triangle Inequality Average and Curvature Average

colorings. Their properties, similarities and differences are analyzed and, based

on this analysis, a definition of branching average colorings is presented. Section

4.5 introduces a new branching average coloring called the Stripe Average. Its

use is exemplified in Appendix A.

All colorings named above are examples of average colorings. Before contin-

uing to the discussion of these colorings, the average colorings must be defined.

Also, two different interpolation methods for average colorings are presented.

4.1 Average Colorings

Given a truncated orbit OT (z0), introduce the notation Zm
i = {zi−m, zi−m+1, . . . , zi}.

The notation Zm
i (z0) = Zm

i is used equivalently when the point z0 used to cal-

culate the iterates is important. The constant m is the number of iterates in Zm
i

preceding zi. Average colorings calculate an average of a function t : Cm+1 7→ R
evaluated at all points Zm

i (z0) contained in a truncated orbit OT (z0). For a point

z0 ∈ Li ∪Bi, denote this average sum Si. Formally,

Si(OT (z0)) =
1

i−m

i∑
n=m+1

tn (4.1)

where tn = t(Zm
n (z0)). The function t is called the addend function and it is

assumed to be a continuous function of elements in Zm
n .

Each element t(Zm
i) of the average sum requires m iterations that precede zi.

When applying average colorings to a fractal, the iteration levels L0, . . . , Lm are

27

CHAPTER 4. BRANCHING AVERAGE COLORINGS 28

excluded from the coloring calculations because the required number of preceding

iterations are not available.

4.1.1 Using Smooth Iteration Count for Interpolation

Let i > m+1. Consider a point z0 ∈ Bi, z0 = r0e
iθ0 , and another point ẑ0 ∈ Li−1

such that ẑ0 = (r0 + ε)eiθ0 , where ε is small and nonnegative. The corresponding

average sums are

Si(OT (z0)) =
1

i−m

i∑
n=m+1

t(Zm
n (z0))

for z0 and

Si−1(OT (ẑ0)) =
1

i−m− 1

i−1∑
n=m+1

t(Zm
n (ẑ0))

for ẑ0. For all elements ẑn ∈ OT (ẑ0), ẑn → zn as ε ↓ 0. It follows from the

continuity of t that also t(Zm
n (ẑn)) → t(Zm

n (z0)). The sum Si−1 can thus be

calculated for OT (z0) as ε ↓ 0.

A discontinuity appears for the average sums between the points z0 and ẑ0

because, in general, Si 6= Si−1. This discontinuity can be eliminated by interpo-

lating between Si−1 and Si in Li∪Bi. The decimal part d of the smooth iteration

count is 0 at Bi−1 and converges to 1 in the neighborhood of Bi that intersects

Li. Thus d can be used as the interpolation coefficient.

Using linear interpolation, define for z ∈ Li ∪Bi a coloring function

uL(OT (z)) = dSi + (1− d)Si−1. (4.2)

For z0 ∈ Bi as above, d = 0 and uL = Si−1. For ẑ0 ∈ Li−1, d → 1 and uL → Si−1

as ε ↓ 0. That is, uL is continuous. However, linear interpolation normally results

in discontinuity of the derivative at the control points Si. This is illustrated in

Figure 4.1.

Smoothness can be achieved by using some suitable type of splines instead of

linear interpolation. A good choice are the Catmull-Rom splines [4, p. 324-325].

For z ∈ Li ∪Bi, define

uS(OT (z)) = H0(d)Si + H1(d)Si−1 + H2(d)Si−2 + H3(d)Si−3. (4.3)

The polynomials H0−H3 are listed in Table 4.1. The polynomials are chosen so

that at d = 0,
duS

dd
=

1

2
(Si−1 − Si−3)

CHAPTER 4. BRANCHING AVERAGE COLORINGS 29

and at d = 1,
duS

dd
=

1

2
(Si − Si−2).

That is, the tangent of the graph of u at d = 0 (or, equivalently, at d = 1) is

parallel to the line segment connecting the previous and the next control points.

Notation Polynomial

H0
1
2
(−d2 + d3)

H1
1
2
(d + 4d2 − 3d3)

H2
1
2
(2− 5d2 + 3d3)

H3
1
2
(−d + 2d2 − d3)

Table 4.1: The Catmull-Rom spline weighting polynomials.

The coloring 4.3 interpolates between the points Si−2 at d = 0 and Si−1 at

d = 1, whereas the points Si−3 and Si are needed for specifying the derivatives at

d = 0 and d = 1, respectively. The coloring uS is smooth also in the neighborhood

of Bi. It is here called smooth interpolation due to its smoothness. Linear and

smooth interpolation are illustrated in Figure 4.1.

The above discussion of average colorings is summarized by the following

definition.

Definition 4.1 (Average Coloring). Given an addend function t : Cm 7→ R and

average sums specified by equation 4.1, an average coloring is given either by 4.2

or 4.3.

For some fractals, the lack of smoothness for linear interpolation may create

artifacts similar to those in Figure 3.3. For fractals generated with various values

of c in system 2.3, these artifacts are subtle and almost indistinguishable (cf.

Figure 4.3).

For some other fractals, however, the artifacts are clearly visible. Figure 4.2

compares the linear and smooth interpolation methods applied to a detail of

a fractal set that clearly shows the artifacts. The Triangle Inequality Average

coloring was used. The fractal is calculated in analogy with the example fractal,

but system 2.3 is replaced by the system

zn+1 =
z2

n

1 + dzn

+ c

CHAPTER 4. BRANCHING AVERAGE COLORINGS 30

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
−4

−3

−2

−1

0

1

2
Linear and spline interpolation

r

u(
r)

Linear
Catmull−Rom
Control points

Figure 4.1: Comparison of linear and Catmull-Rom spline interpolation methods

on an arbitrarily chosen set of control points.

where d = −0.2013 + 0.5638i and c = 1.4686 + 1.265i. Using smooth interpo-

lation removes the artifacts. On the other hand, the structure of the coloring

becomes blurrier because the average sums are interpolated over four iteration

levels instead of two.

4.2 The Triangle Inequality Average Coloring

The Triangle Inequality Average coloring was originally developed by Kerry

Mitchell. Figure 4.3 shows the Triangle Inequality Average coloring applied to

the example fractal.

The original implementation used linear interpolation. It was designed for

coloring the Mandelbrot set whereas a variation adapted for Julia sets is presented

here. In the Julia set variant, the constant c in the discussion below denotes the

seed of the Julia set (0.5 + 0.25i for the example fractal). In the Mandelbrot

variant, c corresponds to the position of the pixel to be colored. However, both

variants are based on the same idea and the two variations merely reflect the

CHAPTER 4. BRANCHING AVERAGE COLORINGS 31

Figure 4.2: Comparison of linear (left) and smooth (right) interpolation.

differences in the calculation algorithm for Julia and Mandelbrot fractal images.

Their visual appearance is very similar.

Consider the system 2.3. The nth iteration can be written

zn = zp
n−1 + c.

Applying the triangle inequality to the right side of the equation gives

||zp
n−1| − |c|| ≤ |zp

n−1 + c| ≤ |zp
n−1|+ |c|,

or

||zp
n−1| − |c|| ≤ |zn| ≤ |zp

n−1|+ |c|.

CHAPTER 4. BRANCHING AVERAGE COLORINGS 32

Figure 4.3: The example fractal colored with the Triangle Inequality Average

coloring using linear interpolation.

Introduce the notation

mn = ||zp
n−1| − |c||

and

Mn = |zp
n−1|+ |c|

for the upper and lower bounds of |zn|. Note that mn = mn(zn−1) and Mn =

Mn(zn−1). These bounds can be used to define a quotient in the interval [0, 1].

Definition 4.2 (Triangle Inequality Average Coloring). Define the addend func-

tion t : C2 7→ R as

t(Z1
n) =

|zn| −mn

Mn −mn

. (4.4)

CHAPTER 4. BRANCHING AVERAGE COLORINGS 33

Using this addend function, the Triangle Inequality Average coloring is given by

Definition 4.1.

Consider the two cases when the term |zn| reaches its upper and lower bounds.

1. If arg zp
n−1 = − arg c, zp

n−1 and c point at opposite directions in the complex

plane and the lower bound is reached. Formally, |zp
n−1 + c| = ||zp

n−1| − |c||.

2. If arg zp
n−1 = arg c, zp

n−1 and c are parallel and |zp
n−1 + c| = |zp

n−1|+ |c|.

Thus t(Z1
n) varies as a function of arg zp

n−1 between 0 when arg zp
n−1 = − arg c

and 1 when arg zp
n−1 = arg c.

4.2.1 Behavior for Distant Starting Points

The following discussion describes the properties of an addend tn under the

assumption that the magnitude of the starting point z0 is large so that the

simplified system 3.2 is accurate for the n−1 first iterations. The addend function

t of the Triangle Inequality Average coloring is based on the effect of c on the

argument of iterates. Thus the system 2.3 is used for the nth iteration whereas

the system 3.2 is used for the n− 1 first iterations.

Denote c = rce
θc . Assuming rc � |z0|, the difference in the bounds Mn and

mn can be simplified to

Mn −mn = |zp
n−1|+ rc − ||zp

n−1| − rc|

= 2rc

because |zp
n−1| > rc. The nth addend tn can be expressed as

tn =
rn −mn

Mn −mn

=
r2
n −m2

n

2rc(rn + mn)
.

The square of rn can be written

r2
n = |zn|2

= (zp
n−1 + c)(zp

n−1 + c)

= (rp
n−1e

iθn−1p + rce
iθc)(rp

n−1e
−iθn−1p + rce

−iθc)

= r2p
n−1 + r2

c + rp
n−1rc(e

i(θn−1p−θc) + e−i(θn−1p−θc))

= r2p
n−1 + r2

c + 2rp
n−1rc cos(θn−1p− θc). (4.5)

CHAPTER 4. BRANCHING AVERAGE COLORINGS 34

In analogy with 3.3, the (n− 1)th iterate is zn−1 = zpn−1

0 . It follows that rn−1 =

rpn−1

0 and θn−1 = pn−1θ0. Substituting to equation 4.5 gives

r2
n = r2pn

0 + r2
c + 2rpn

0 rc cos(pnθ0 − θc).

Using the identities above, the nth addend tn becomes

tn =
r2
n −m2

n

2rc(rn + mn)

=
r2pn

0 + r2
c + 2rpn

0 rc cos(pnθ0 − θc)− (r2pn

0 − 2rpn

0 rc + r2
c)

2rc(rn + mn)

=
2rpn

0 rc[cos(pnθ0 − θc) + 1]

2rc(rn + rpn

0 − rc)

=
cos(pnθ0 − θc) + 1

|zpn

0 + c|/rpn

0 + 1− rc/r
pn

0

(4.6)

≈ 1

2
cos(pnθ0 − θc) +

1

2
. (4.7)

In the last step the approximations |zpn

0 + c|/rpn

0 ≈ 1 and rc/r
pn

0 ≈ 0 have been

used.

Expressions 4.6 and 4.7 encapsulate the characteristic properties of the Tri-

angle Inequality Average coloring. Firstly, 4.6 shows that the addend tn is only

weakly dependent of the magnitude r0 of the initial point. Secondly, tn varies

sinusoidally as a function of of the initial angle θ0. Each iteration increases its

frequency by a factor p. Section 4.4.1 explains how these properties lead to the

branching appearance that is characteristic to the Triangle Inequality Average

coloring.

Figure 4.4 shows t(Z1
1) . . . t(Z1

4) and their mean value as a function of r1 and

θ1. Note that r1 and θ1 correspond to r0 and θ0 in the above equations because

evaluating t requires two iterates. The iterates z1 . . . z4 are calculated for the

example fractal. The curves are in accordance with the above observations based

on expressions 4.6 and 4.7.

4.2.2 Behavior in the Neighborhood of Origin

Theorem 4.1. The Triangle Inequality Average coloring is discontinuous at

points that are mapped to 0.

Proof. Assume that zn = εeiθ, where ε is small, is an arbitrary iterate that has

been mapped to the neighborhood of the origin. The corresponding upper and

CHAPTER 4. BRANCHING AVERAGE COLORINGS 35

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.2

0.4

0.6

0.8

1

r
1

t n, Σ
 t n

TIA sum terms and average as a function of the initial magnitude

t
1
t
2
t
3
t
4
mean

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

θ
1

t n, Σ
 t n

TIA sum terms and average as a function of the initial angle

t
1
t
2
t
3
t
4
mean

Figure 4.4: The dependence of the addends t1 . . . t4 on r1 and θ2 in the Triangle

Inequality Average coloring. System 2.3 was used in the calculations.

lower bounds are

Mn+1 = εp + rc

and

mn+1 = |εp − rc| = rc − εp.

The denominator in expression 4.4 is

Mn+1 −mn+1 = 2εp.

Using equation 4.5, the addend tn+1 can be written

tn+1 =
rn+1 −mn+1

Mn+1 −mn+1

=
r2
n+1 −m2

n+1

2εp(rn+1 + mn+1)

=
ε2p + r2

c + 2εprc cos(pθ − θc)− (ε2p − 2εprc + r2
c)

2εp(rn+1 + mn+1)

=
2εprc[cos(pθ − θc) + 1]

2εp(rn+1 + mn+1)

=
rc[cos(pθ − θc) + 1]

(rn+1 + rc − εp)

CHAPTER 4. BRANCHING AVERAGE COLORINGS 36

The magnitude of the (n + 1)th iterate is

rn+1 = |εeiθ + c| → rc

as ε → 0. Thus

tn+1 →
rc[cos(pθ − θc) + 1]

2rc

=
1

2
cos(pθ − θc) +

1

2
.

This limit is dependent on the angle θ so tn+1 is discontinuous at zn = 0.

Figure 4.5 shows the discontinuities of the Triangle Inequality Average marked

with circles.

Figure 4.5: The Triangle Inequality Average coloring applied to the example

fractal. The discontinuous points that are mapped to 0 are marked with circles.

CHAPTER 4. BRANCHING AVERAGE COLORINGS 37

4.3 The Curvature Average Coloring

The Curvature Average coloring was originally developed by Damien M. Jones

for Ultra Fractal in 1999. It is illustrated in Figure 4.6. As the figure and the

following analysis reveal, it is both visually and mathematically very similar to

the Triangle Inequality Average coloring.

Figure 4.6: The example fractal colored with the Curvature Average coloring

using linear interpolation.

The coloring is based on the idea of approximating the curvature of a curve

defined by discrete points. The curve is in this case defined by the points of a

CHAPTER 4. BRANCHING AVERAGE COLORINGS 38

truncated orbit OT (z0). The approximation used is

t(Z2
n) =

∣∣∣ arg(−π,π]

zn − zn−1

zn−1 − zn−2

∣∣∣.
where arg(−π,π] z denotes the argument of z in the interval (−π, π]. This also

defines the averaging function in the sum 4.1.

Definition 4.3 (Curvature Average Coloring). Define the addend function t :

C3 7→ R as

t(Z2
n) =

∣∣∣ arg(−π,π]

zn − zn−1

zn−1 − zn−2

∣∣∣. (4.8)

Using this addend function, the Curvature Average coloring is given by Definition

4.1.

Unlike the Triangle Inequality Average coloring, the Curvature Average is

continuous at points that are mapped to 0.

4.3.1 Behavior for Distant Starting Points

Suppose r0 is large and the simplified system 3.2 can be used instead of 2.3.

Substituting zn = zpn

0 to 4.8 gives

t(Z2
n) =

∣∣∣ arg(−π,π]

zn − zn−1

zn−1 − zn−2

∣∣∣
=

∣∣∣ arg(−π,π]

zpn

0 − zpn−1

0

zpn−1

0 − zpn−2

0

∣∣∣
=

∣∣∣ arg(−π,π]

zpn−1

0 (z
pn−1(p−1)
0 − 1)

zpn−2

0 (z
pn−2(p−1)
0 − 1)

∣∣∣
=

∣∣∣ arg(−π,π]

z
pn−2(p−1)
0 (z

pn−1(p−1)
0 − 1)

z
pn−2(p−1)
0 − 1

∣∣∣
Assuming z

pn−1(p−1)
0 > z

pn−2(p−1)
0 � 1 gives

t(Z2
n) ≈ | arg(−π,π] z

pn−1(p−1)
0 |

= | − π + θ0p
n−1(p− 1)− 2πbθ0p

n−1(p− 1)

2π
c|. (4.9)

where bac denotes the largest integer less than or equal to a.

The visual appearance of the Curvature Average coloring is in accordance

with equation 4.9. Figure 4.7 shows t(Z2
2) . . . t(Z2

5) and their mean value as a

CHAPTER 4. BRANCHING AVERAGE COLORINGS 39

function of r0 and θ0. The iterates are generated for the example fractal. The

addends are clearly almost independent of r0. The approximative expression

4.9 to t(Z2
n) defines a continuous and periodic function that corresponds to the

absolute value of a triangle wave function (cf. Figure 4.7). Its frequency becomes

p times larger at each iteration. Thus the Curvature Average coloring exhibits

the similar properties as the Triangle Inequality Average that lead to branching.

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

0.5

1

1.5

2

2.5

3

r
2

t n, Σ
 t n

Curvature sum terms and average as a function of the initial magnitude

t
2
t
3
t
4
t
5
mean

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

θ
2

t n, Σ
 t n

Curvature sum terms and average as a function of the initial angle

t
2
t
3
t
4
t
5
mean

Figure 4.7: The addends t(Z2
2) . . . t(Z2

5) as functions of r2 and θ2 in the Curvature

Average coloring. System 2.3 was used in the calculations.

4.4 Similarities and Differences

Although the Triangle Inequality Average and Curvature Average colorings are

based on different approaches, they appear to have visually similar structure.

This is due to the fact that the addends exhibit similar behavior for distant

iterates, as can be noted by comparing equations 4.7 and 4.9.

As an iterate of an orbit escapes outside the area where the system 2.3 behaves

chaotically, the following iterates diverge at an increasing rate. The conclusions

CHAPTER 4. BRANCHING AVERAGE COLORINGS 40

made above for distant starting points are valid for these iterates. The corre-

sponding addends appear to give the average sum its characteristic appearance.

This claim is supported by Figure 4.8. It shows the Triangle Inequality Av-

erage and Curvature Average colorings with the addends corresponding to the

last 5 iterations excluded from the average sum. In contrast to the distant it-

erates, the remaining addends do not exhibit regular behavior described by the

simplified system 3.2. Thus the characteristic branching structure is not present.

Figure 4.8: The Triangle Inequality Average (top) and Curvature Average col-

orings (bottom) with the last 5 addends excluded from the average sums.

The addends for these colorings are periodic functions and each iteration in-

creases the frequency by a factor p. The periodic function is the cosine function

CHAPTER 4. BRANCHING AVERAGE COLORINGS 41

for the Triangle Inequality Average and the absolute value of a triangle wave

function for Curvature Average. The difference in smoothness with respect to

the initial angle θ0 emerge from these functions – the cosine function is continu-

ous and smooth whereas the absolute value of a triangle function is continuous

but not smooth at its maximum and minimum points. The points where the

Curvature Average is not smooth are clearly visible as edges in Figure 4.6.

4.4.1 Emergence of Branches

The following definition summarizes the properties that lead to the branching

appearance characteristic to the Triangle Inequality Average and Curvature Av-

erage colorings (cf. Figure 4.3 and Figure 4.6).

Definition 4.4 (Branching Coloring). An average coloring function is said to be

branching if its addends tn = t(Zm
n) fulfill the following properties when applied

to the simplified system 2.3.

1. For k = n, n−1, . . . , n−m, the derivatives dtn
drk

of an addend tn with respect

to the magnitudes rk are small.

2. Addends are periodic functions of the argument of iterates.

3. Each iteration increases the period by an integer factor p.

Property 1 implies that the addends vary more noticeably with respect to

the argument of iterates than their magnitude, and lines perpendicular to the

iteration boundaries appear at the iteration levels. Property 2 guarantees that

the lines are evenly distributed around the iteration levels. Property 3 causes

the number of lines to increase by a factor of p from Li−1 to Li. Interpolation

of the average sums between two iteration boundaries create an impression that

the lines divide into p branches.

For the example fractal, p = 2 so each iteration divides the branches into

two. This period doubling is a consequence of Property 3 above. Figure 4.9

illustrates that the number of lines is doubled between each iteration boundary

when moving towards the fractal set. The figure shows the average sums of

the Triangle Inequality Average coloring applied to the example fractal without

interpolation.

CHAPTER 4. BRANCHING AVERAGE COLORINGS 42

Figure 4.9: The average sums of the Triangle Inequality Average coloring applied

to the example fractal without interpolation.

4.4.2 Continuity and Smoothness

Except for points that are mapped to 0, the Triangle Inequality Average color-

ing is continuous and smooth in the iteration levels. Ignoring the effect of the

small discontinuity in the decimal part of the smooth iteration count, it is also

continuous but not smooth at the iteration boundaries when using linear interpo-

lation. Using smooth interpolation guarantees smoothness also at the iteration

boundaries.

The same conclusions also hold for the Curvature Average coloring except for

the lines that emerge at the extreme points of the triangle waves. On these lines

CHAPTER 4. BRANCHING AVERAGE COLORINGS 43

the coloring is continuous but not smooth.

4.5 The Stripe Average Coloring

A branching coloring similar to the Triangle Inequality Average and Curvature

Average can be achieved with a more explicit approach.

Definition 4.5 (Stripe Average Coloring). Define the addend function t : C 7→ R
as

t(zn) =
1

2
sin(s arg zn) +

1

2
. (4.10)

The constant s is called the stripe density. Using this addend function, the Stripe

Average coloring is given by Definition 4.1.

Using the approximative identity θn = pnθ0, the addend function becomes

t(zn) =
1

2
sin(spnθ0) +

1

2
.

For s = 1, the addend function is equivalent to 4.7 after a translation by θc with

respect to θ0. Consequently, the Stripe Average coloring fulfills properties 1-3

of Definition 4.4. Its behavior is equivalent to that of the Triangle Inequality

Average for distant iterates.

4.5.1 The Stripe Density Parameter

As its name indicates, the stripe density parameter s can be used to adjust the

density of stripes. Large values increase the variation frequency with respect to

θ0 and thus result in denser stripes. Non-integer values result in discontinuity.

Figure 4.10 shows the Stripe Average coloring using s = 3 (top) and s = 10

(bottom) applied to the example fractal. Comparison with Figure 4.3 shows

that the branching structure is similar but stripes are denser in Figure 4.10.

Bailout M = 1020 was used in both images.

It is noteworthy that increasing the bailout value has a similar effect of creat-

ing denser stripes. An increase to a power of p in the bailout adds one iteration

and a corresponding addend to every average sum. This addend has a frequency

that is p times larger than the frequency of the preceding addend. However,

numerical accuracy sets a limit to how large bailout values can be used. Thus

a higher stripe density can be achieved even for small bailouts by choosing the

value of s appropriately.

CHAPTER 4. BRANCHING AVERAGE COLORINGS 44

Figure 4.10: The Stripe Average coloring, using the stripe factors s = 3 (top)

and s = 10 (bottom), applied to the example fractal.

4.5.2 Behavior in the Neighborhood of Origin

For zn = εeiθ, the expression 4.10 becomes

t(zn) =
1

2
sin(sθ) +

1

2

This is independent of ε but dependent on θ. Thus the Stripe Average coloring

is discontinuous at points that are mapped to 0. The discontinuities are clearly

identifiable in Figure 4.10.

Figure 4.11 shows the Stripe Average applied to the example fractal with the

6 last addends excluded from the average sum. In analogy with the Triangle

CHAPTER 4. BRANCHING AVERAGE COLORINGS 45

Inequality Average and Curvature Average colorings, the branching structure

disappears as the addends corresponding to the distant iterates are excluded.

Figure 4.11: The Stripe Average coloring, using s = 3, applied to the example

fractal. Six last addends were excluded from the average sums.

Kapitel 5

Svensk sammanfattning

Målsättningen med detta arbete var att studera matematiska egenskaper hos

n̊agra algoritmer som används för att färglägga fraktalbilder.

Betrakta funktionen f(z) = zp + c som definierar ett dynamiskt system zn =

zp
n−1 + c. Beroende p̊a värdena av z0 och c kan iterationerna z1 = f(z0), z2 =

f(z1), . . . sträva till oändligheten eller oskillera periodiskt mellan ett ändligt antal

punkter.

Den klassiska algoritmen för beräkning av divergenta fraktaler kan utvidgas

p̊a följande sätt genom att införa index-, palett-, och färgläggningsfunktioner. För

en punkt z0 ∈ C, beräkna iterationerna z1 = f(z0), z2 = f(z1), . . . , zN = f(zN−1)

tills |zN | > M . Konstanten M definierar mängden |zn| ≤ M i C där fraktalen

beräknas. Om villkoret |zn| > M inte uppfylls för n̊agon iteration z1, z2, . . . , zNmax

s̊a betraktas punkten höra till fraktalmängden. Konstanten Nmax definierar max-

imala antalet iterationer. Detta arbete koncentrerar sig p̊a omr̊aden där |zn| > M

uppfylls.

Färgläggningsfunktionen avbildar mängden av iterationerna {z0, z1, . . . , zN}
p̊a ett reellt tal. Detta tal avbildas sedan av indexfunktionen och palettfunktionen

till den slutliga RGB-färgen. Dessa operationer utförs för varje pixel. Iterations-

gränser förekommer mellan punkter som kräver olika antal iterationer för att

avbildas utanför omr̊adet |zn| ≤ M .

Förutom att kräva s̊a lite beräkningsoperationer som möjligt är det ofta

önskvärt att färgläggningen är glatt, dvs. att den är kontinuerligt deriverbar

i C. S̊adana parametrar som ing̊ar i färgläggningsformeln och kan användas för

att justera färgläggningens utseende är ocks̊a nyttiga.

46

KAPITEL 5. SVENSK SAMMANFATTNING 47

Färgläggningsfunktionen för den klassiska iterationsräknaren kan definieras

som

u = kN

där N betecknar antalet iterationer som behövs för att |zN | > M och k är en

positiv konstant. Färgläggningens värde ändras diskontinuerligt vid iterations-

gränserna och h̊alls konstant mellan dem.

Den kontinuerliga iterationsräknaren är en kontinuerlig men inte glatt

färgläggning och den ger klart synliga gränserna där iterationsräknarens värde

ändras. Den glatta iterationsräknaren är glatt överallt. Dessa färgläggningar an-

tar värden lika med iterationsräknaren p̊a iterationsgränserna men varierar kon-

tinuerligt mellan dem. Iterationsgränserna kan inte urskiljas fr̊an en fraktal som

färglagts med den glatta iterationsräknaren. En jämförelse med den kontinuerliga

iterationsränkaren visar varför glatthet är en viktig egenskap hos färgläggningar.

Den glatta iterationsräknaren är dock glatt endast för systemet f(z) = zp

medan den visar diskontinuiteter p̊a iterationsgränserna för det kaotiska systemet

f(z) = zp + c, c 6= 0. En övre gräns för diskontinuitetens storlek kan beräknas

med formeln

∆max =
1

ln p
ln

ln Mp

ln(Mp − |c|)
. (5.1)

I praktiken är diskontinuiteten obetydligt liten för M = 10 och blir ännu mindre

för större värden av M .

Medeltalfärgläggningar är en familj av färgläggningar som utnyttjar

medelvärdessummorna

Si(z0, z1, . . . , zi) =
1

i−m

i∑
n=m+1

tn. (5.2)

Addenderna tn beräknas med en s̊a kallad addendfunktion t : Cm+1 7→ R
som är en funktion av zn och eventuellt ett antal föreg̊aende iterationer

zn−1, zn−2, . . . , zn−m. Addendfunktionens egenskaper bestämmer färgläggningens

utseende.

Medeltalfärgläggningarna beräknar summorna Si−1 och Si och interpoler-

ar mellan dessa. Decimaldelen av den glatta iterationsräknaren används som

interpolationsvariabel. Linjär interpolation ger vanligen goda och nästan glat-

ta resultat, annars kan man använda Catmull-Roms kurvor för att f̊a en glatt

färgläggning.

KAPITEL 5. SVENSK SAMMANFATTNING 48

Triangelolikhet- och kurvatur-medelvärdesfärgläggningarna är exempel p̊a

medelvärdesfärgläggningar. Addendfunktionen för den sistnämnda är

t(zn, zn−1, zn−2) =
∣∣∣ arg(−π,π]

zn − zn−1

zn−1 − zn−2

∣∣∣ (5.3)

där arg(−π,π] z betecknar argumentet av z p̊a intervallet (−π, π]. För

triangelolikhet-medelvärdesfärgläggningen är addendfunktionen

t(zn, zn−1) =
|zn| −mn

Mn −mn

(5.4)

där mn = ||zp
n−1| − |c|| och Mn = |zp

n−1|+ |c|.
Dessa färgläggningar är kontinuerliga. Om Catmull-Roms kurvor används

för interpolation s̊a är triangelolikhet-färgläggningen ocks̊a glatt. Kurvatur-

färgläggningens färgläggningsfunktion inneh̊aller absolutbelopp och är därför inte

glatt.

Dessa färgläggningar har en likadan förgrenande struktur. Denna struktur

följer ur följande egenskaper hos addendfunktionen.

1. Addendernas derivator dtn
drk

med avseende p̊a iterationernas storlek rk är

små.

2. Addenderna är periodiska funktioner av iterationernas argument.

3. Varje iteration ökar p̊a perioden med en heltalsfaktor p.

En medelvärdesfärgläggning som uppfyller dessa egenskaper kallas

förgrenande medelvärdesfärgläggning. Egenskap 1 medför att färgläggningen

varierar tydligare vinkelrätt mot iterationsgränserna och bildar linjer mellan

dem. Fr̊an egenskap 2 följer att linjerna är jämnt fördelade. Egenskap 3 medför

att antalet linjer ökar p-faldigt. P̊a grund av interpoleringen ser linjerna ut att

förgrenas till p grenar mellan varje iterationsgräns.

För stora värden av zn är triangelolikhet-medeltalfärgläggningens addend-

funktion approximativt
1

2
sin(arg zn) +

1

2
. (5.5)

Genom att införa den s̊a kallade randparametern s f̊as addendfunktionen

t(zn) =
1

2
sin(s arg zn) +

1

2
.

Denna addendfunktion definierar rand-medelvärdesfärgläggningen. Randparame-

tern s bestämmer randtätheten hos denna färgläggning.

Appendix A

Using Colorings on a Fractal

Image

This Appendix illustrates the construction process of a fractal image. It also

exemplifies some possible uses of the Smooth Iteration Count and Stripe Average

colorings, and shows that the colorings discussed can be applied to other systems

than the system zn+1 = zp
n + c used in earlier examples.

The image is constructed from multiple layers each containing an independent

fractal image. Layers are combined together using merge modes that define how

they interact visually [6]. The merge modes used in this example are described

in Table A.1.

A fractal set called Rudy’s Cubic Mandelbrot, developed by Mark Townsend,

was chosen to be used for the image. It is defined by the system

zn+1 = z3
n + dzn + c

where d is a constant. Both z0 and c are set to correspond to the position of the

pixel to be calculated. The bailout value 1010 and the exponent p = 3 was used

for calculating the smooth iteration count.

The image was created using Ultra Fractal version 4.03. At the moment of

writing, the Smooth Iteration Count and Stripe Average colorings are available

in the Ultra Fractal Formula Database in the file jh.ucl. The Ultra Fractal

parameter file for the image is available in jh.upr.

49

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 50

A.1 Intermediate Images

Figures A.1 - A.9 present a sequence of intermediate images and associated notes.

Figure A.1: After trying various values, the constant d was set to −0.7198 +

0.9111i. Interesting shapes shown on the right side of the figure were found in

the location indicated on the left.

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 51

Figure A.2: Three layers using the Stripe Average coloring with stripe densities

s = 2, s = 4 and s = 8 were created. The opacities of the layers were set to

100%, 50% and 33% so that 1/3 of the colors of the final result comes from each

layer. This averaging technique has been proposed by Kerry Mitchell [7].

Stripe density s = 1 did not give enough structure whereas s = 16 resulted in

too dense stripes. The figure shows the three layers averaged with s = 16 on the

right and s = 8 on the left.

The color densities and palettes were adjusted to give a pleasant variation of

dark and light areas. This requires that the dark and light spots of the averaged

layers partially coincide.

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 52

Figure A.3: After some searching, an interesting spiral shape was found.

Figure A.4: Colors were added to the averaged layers. Analogous green and blue

hues were chosen for each of the three layers in order to create an interesting

variation of color. A new, partially transparent Stripe Average layer was added

to highlight parts of the image with a color lighter than the background.

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 53

Figure A.5: The colors of the Stripe Average layers were further adjusted. The

black color was replaced by transparency on the two topmost averaged layers.

This made the final result lighter and removed gray artifacts from the background

that emerged from averaging white and black.

A layer using the Smooth Iteration Count coloring was added using the Hue

merge mode. However, the layer was removed as it did not improve the appear-

ance of the image.

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 54

Figure A.6: Two layers with a smooth disk-shaped color transition were added

using the overlay merge mode. The first of the layers darkens the background

tints. The second one, masked to only affect the highlight layer, transforms the

highlights to create more variation in color.

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 55

Figure A.7: The size, position and color of the disk overlays were further adjusted.

The size of the highlights was reduced. Minor adjustments in color were also

made to other layers.

Figure A.8: Another color scheme was made as well, with cold blue and green

hues in the spiral. However, the author found the warm hues of Figure A.7 more

appealing.

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 56

Figure A.9: Two layers using the Smooth Iteration Count were added to highlight

the fractal structure. The first layer uses the hard light merge mode with opacity

50% to add color to the background. The second layer uses the overlay merge

mode to lighten the fractal structure highlights.

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 57

Merge mode Description

Normal Directly returns colors from the layer.

Multiply Multiplies the layer with the underlying layers. The

result is always a darker color, thus darkening the un-

derlying layers.

Screen Multiplies the inverse of the layer with the inverse of the

underlying layers, and inverts that again. The result is

always a lighter color, thus brightening the underlying

layers. Screen is the inverse of Multiply.

Overlay Multiplies or screens the colors, depending on the color

in the underlying layers. Creates color blending effects

between the layer and the underlying layers.

Hue Returns the hue of the layer, and the saturation and lu-

minance of the underlying layers. Colors the underlying

layers with the hue of the layer.

Hard Light Multiplies or screens the colors, depending on the color

in the layer. Emphasizes the dark and light regions in

the layer, while the areas with medium brightness be-

come transparent.

Table A.1: Description of layer merge modes [8].

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 58

A.2 Conclusion

Tables A.2 - A.4 show the layer contents and their cumulative effect to the

resulting image. Layer names, opacities and merge modes used to combine each

layer to the underlying cumulative image are given above the corresponding layer

images. The merge modes are described in Table A.1.

The Stripe Average coloring is well suited for the layer averaging technique

– the result has more interesting structure than a single layer colored using the

Stripe Average. This technique also offers more freedom to adjust the final result.

Whereas the Stripe Average coloring has its characteristic striped appearance,

the soft color transitions created by the Smooth iteration Count coloring direct

the attention of the viewer to the fractal structure. Combined with the use of

transparency, it is useful for highlighting the fractal structure without affecting

other areas of the image.

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 59

Layer Image Cumulative Image

3. Stripe Average s = 8 (Normal, 33%)

2. Stripe Average s = 4 (Normal, 50%)

1. Stripe Average s = 2 (Normal, 100%)

Table A.2: Layers 1-3 of the image. Layer name and number is shown above

the corresponding images. Merge mode and opacity are given in brackets. The

checkerboard pattern in the images indicates transparent areas.

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 60

Layer Image Cumulative Image

6. Lighten background overlay disk (Overlay, 100%)

5. Highlights mask (Mask for layer 6)

4. Violet overlay disk (Overlay, 100%)

Table A.3: Layers 4-6.

APPENDIX A. USING COLORINGS ON A FRACTAL IMAGE 61

Layer Image Cumulative Image

9. Highlight spiral overlay (Overlay, 100%)

8. Highlight spiral background (Hard Light, 50%)

7. Highlight knots (Normal, 100%)

Table A.4: Layers 7-9.

Bibliography

[1] M. F. Barnsley, Fractals Everywhere, Academic Press Inc., London, 1988.

[2] J. Barrallo, D. M. Jones, Coloring Algorithms for Dynamical Systems in the

Complex Plane, Visual Mathematics, vol. 1, No. 4, 1999 (April 19th, 2007).

http://www.mi.sanu.ac.yu/vismath/javier/index.html

[3] E. L. Devaney, An Introduction to Chaotic Dynamical Systems, Second Edi-

tion, Westview Press, Colorado, 2003.

[4] D. Hearn, M. P. Baker, Computer Graphics C Version, Second edition, Pren-

tice Hall, New Jersey, 1997.

[5] J. H. Hubbard, B. B. Hubbard, Vector Calculus, Linear Algebra, and Dif-

ferential Forms, Prentice Hall, New Jersey, 1999.

[6] A. Kelley, Layering techniques in fractal art, Computers & Graphics 24 2000,

p. 611-616.

[7] J. Parke, Working with Ultra Fractal, course material for lesson 6, 2005 (May

22nd, 2007).

http://www.visual-arts-academy.com

[8] F. Slijkerman, Ultra Fractal Help, 2005 (May 17th, 2007).

http://www.ultrafractal.com/help/

62

